z-logo
Premium
24 IPR isomers of fullerene C 84 : Cage deformation as geometrical characteristic of local strains
Author(s) -
Khamatgalimov Ayrat R.,
Kovalenko Valeri I.
Publication year - 2011
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.23099
Subject(s) - dihedral angle , delocalized electron , fullerene , molecule , valence (chemistry) , crystallography , chemistry , computational chemistry , quantum , materials science , molecular geometry , molecular physics , physics , quantum mechanics , organic chemistry , hydrogen bond
The structures of 24 IPR‐isomers of C 84 fullerene with distributed single, double and delocalized bonds are presented. Obtained results are fully supported by DFT quantum‐chemical calculations of electronic and geometrical structures of these isomers. Two reasons of instability of fullerene molecules are their radical origin and/or high local strain. Distortion of pentagons as well as hexagons with alternating single and double bonds is the most significant geometrical parameter reflecting local strain of a molecule. These distortions are measured as maximal dihedral angles of those cycles and reach 20 degrees in mostly deformed hexagons and pentagons. In contrast high values of dihedral angles in hexagons with delocalized π‐bonds are typical for stable isomers. Other geometric parameters such as valence angles, sums of valence angles and dihedral angles between approximate planes of fused rings have no marked influence on stability. The development of strain‐related criteria for fullerene stability will be helpful in the prediction which isomers might potentially be observable in experiment. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here