z-logo
Premium
Spin‐free quantum chemistry: What one can gain from fock's cyclic symmetry
Author(s) -
Luzanov A. V.
Publication year - 2011
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.22943
Subject(s) - fock space , physics , quantum mechanics , operator (biology) , spin (aerodynamics) , wave function , charge (physics) , symmetry (geometry) , symmetry operation , theoretical physics , mathematical physics , rotational symmetry , mathematics , chemistry , biochemistry , geometry , repressor , transcription factor , mechanics , gene , thermodynamics
The spin‐free wave function due to Fock (Zh Eksp Teor Fiz, 1940, 10, 961) is re‐examined with a stress on the reduced density matrix (RDM) theory. The key notion of the Fock approach is the cyclic symmetry of wave functions. It is a specific algebraic identity involving transpositions of numbers taken from two different columns of the corresponding Young tableau. We show first how to construct symmetry adapted states by accounting for high‐order cyclic symmetry conditions. For Young's projectors, it gives a new expression including nothing but antisymmetrizers. Next, transforming the Fock spin‐free state by a duality operator (the star operator in exterior algebra), we arrive at the representation closely related to spin‐flip models. In such spin‐flip models, a coupling operator is the basic object for which we show that the cyclic symmetry is transformed into a tracelessness of the coupling operator. The main results are related to the spin‐free theory of spin properties. In particular, the theorem previously stated (Luzanov and Whyman, Int J Quantum Chem, 1981, 20, 1179) is refined by an explicit general representation of spin density operators through spin‐free (charge) RDMs. Some applications implicating high‐order RDMs (collectivity numbers, the unpaired electron problem, cumulant spin RDMs, spin correlators, etc.) are also considered. For spin‐free RDM components, a new projection procedure without constructing any symmetry adapted state is proposed. An unsolved problem of constructing orthogonal representation matrices within the Fock theory is raised. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here