z-logo
Premium
Effect of solute flexibility and polarization on the solvatochromic shift of a brominated merocyanine dye in water: A sequential MD/QM study
Author(s) -
Malaspina Thaciana,
Fileti Eudes Eterno,
Bastos Erick Leite
Publication year - 2011
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.22684
Subject(s) - solvatochromism , qm/mm , merocyanine , chemistry , polarizability , solvation , molecular dynamics , isomerization , polarization (electrochemistry) , dihedral angle , computational chemistry , chemical physics , photochemistry , solvent , molecule , hydrogen bond , organic chemistry , photochromism , catalysis
A sequential molecular dynamics/quantum mechanics (MD/QM) procedure was used to investigate the effects of solute polarization and flexibility on the solvatochromism of a brominated merocyanine dye (MeBM) in water. Relevant structures for the solution were generated using MD simulations. The structural analysis indicates that the flexibility of MeBM is limited; showing small amplitudes both for dihedral isomerization and for the angle formed between the normal vectors of the pyridine and phenolate rings. The solvatochromic shift in the π–π* electronic transition was studied using both the PM6/CI and PM6/CI/COSMO methods in the gas phase as well as in the solution phase (solute + first solvation shell). The results obtained with the use of the hybrid polarizable continuum model/discrete description are in good agreement with available experimental values and indicate that the polarization of the solute plays a more significant role in the solvatochromism of MeBM than its flexibility. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom