z-logo
Premium
A 2D spinless version of Dirac's equation written in a noninertial frame of reference
Author(s) -
Nascimento D. L.,
Fonseca A. L. A.
Publication year - 2011
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.22657
Subject(s) - zitterbewegung , spinor , manifold (fluid mechanics) , dirac equation , physics , quantum mechanics , dirac (video compression format) , reference frame , mathematical physics , transformation (genetics) , wave function , classical mechanics , frame (networking) , computer science , chemistry , mechanical engineering , telecommunications , biochemistry , neutrino , engineering , gene
In this article, we present a quantized classical‐like wave equation. It is obtained by considering the equivalence between the Hamilton‐Jacobi eq. (which belongs to the usual manifold \input amssym ${\Bbb R^{3}} \otimes {\Bbb R} $ of General Relativity), with our two spinor versions of the Dirac eq. (which belongs to the associated complex manifold \input amssym ${\Bbb C}\otimes {\Bbb C} $ ). In which the electron is considered as a particle‐like entity, instead of the usual wave‐like interpretation of standard Quantum Mechanics. We also consider the transformation properties between the two manifolds through the corresponding groups O (3,1) and SU (2), but we assume a flat Minkowsky space as the background space. We made an illustrative application to the rather standard problem of the hydrogen and helium atoms. We propose a variational extension of the approach, through a Hylleraas‐like computational method, to take into account a many electron problem too futurely. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom