z-logo
Premium
Electrostatic analysis of charge interactions in proteins
Author(s) -
Tsironis G. P.,
Ciudad A.,
Sancho J. M.
Publication year - 2010
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.22123
Subject(s) - electrostatics , kinesin , static electricity , formalism (music) , chemical physics , chemistry , molecule , charge (physics) , interaction energy , electric potential energy , electrostatic interaction , dimer , physics , atomic physics , molecular physics , microtubule , quantum mechanics , energy (signal processing) , art , musical , organic chemistry , visual arts , biology , microbiology and biotechnology
We model proteins as continuous electrostatic media immersed in water to investigate charge mediated processes in their interior. We use a Green's function formalism and find analytical expressions for the electrostatic energy in the vicinity of the protein surfaces. We find that due to image charges generated by the protein dielectric medium embedded in water, the effective electrostatic interaction between the two charges in the interior of the protein has an energy larger than the thermal energy. We focus specifically on kinesin to asses the strength of the electrostatic interaction between ATP and ADP molecules. It is known experimentally that ADP expulsion is correlated to ATP kinesin binding while both processes are essential for the kinesin walk. We estimate that the Bjerrum length in the interior of the kinesin dimer protein is of the order of 4 nm and that the pure electrostatic ATP–ADP interaction is of the order of 3–5 k B T . © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here