z-logo
Premium
Quantum computing measurement and intelligence
Author(s) -
Ezziane Zoheir
Publication year - 2010
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.22056
Subject(s) - computer science , quantum computer , probabilistic logic , quantum , redundancy (engineering) , robustness (evolution) , reliability (semiconductor) , theoretical computer science , computer engineering , artificial intelligence , physics , quantum mechanics , biochemistry , chemistry , power (physics) , gene , operating system
One of the grand challenges in the nanoscopic computing era is guarantees of robustness. Robust computing system design is confronted with quantum physical, probabilistic, and even biological phenomena, and guaranteeing high‐reliability is much more difficult than ever before. Scaling devices down to the level of single electron operation will bring forth new challenges due to probabilistic effects and uncertainty in guaranteeing “zero‐one” based computing. Minuscule devices imply billions of devices on a single chip, which may help mitigate the challenge of uncertainty by replication and redundancy. However, such device densities will create a design and validation nightmare with the sheer scale. The questions that confront computer engineers regarding the current status of nanocomputing material and the reliability of systems built from such minuscule devices are difficult to articulate and answer. This article illustrates and discusses two types of quantum algorithms as follows: (1) a simple quantum algorithm and (2) a quantum search algorithm. This article also presents a review of recent advances in quantum computing and intelligence and presents major achievements and obstacles for researchers in the near future. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here