Premium
Structural, electronic, and optical properties of phenol‐pyridyl boron complexes for light‐emitting diodes
Author(s) -
Zou LuYi,
Ren AiMin,
Feng JiKang,
Ran XueQin,
Liu YanLing,
Sun ChiaChung
Publication year - 2009
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.21993
Subject(s) - chemistry , density functional theory , excited state , homo/lumo , bifunctional , electroluminescence , carbazole , oled , fluorescence , molecule , computational chemistry , photochemistry , atomic physics , organic chemistry , physics , layer (electronics) , catalysis , quantum mechanics
The coordination chemistry of polydentate chelating ligands that contain mixed pyridinephenol donor sets has been a sought‐after target of study and is a possible extension to the chemistry of polypyridines. In this article, seven compounds, which are the four‐coordinate boron complexes containing the mixed phenol‐pyridyl group, have been studied by theoretical calculation. They can function as charge transport materials and emitters, with high efficiency and stability. To reveal the relationship between the structures and properties of these bifunctional or multifunctional electroluminescent materials, the ground and excited state geometries were optimized at the B3LYP/6‐31G(d), HF/6‐31G(d), and CIS/6‐31G(d) levels, respectively. The ionization potentials (IPs) and electron affinities (EAs) were computed. The mobilities of hole and electron in these compounds were studied computationally based on the Marcus electron transfer theory. The lowest excitation energies, and the maximum absorption and emission wavelengths of these compounds were calculated by time‐dependent density functional theory method. As a result of these calculations, the values of HOMO, LUMO, energy gaps, IPs, EAs, and the balance between the hole‐ and electron‐transfer are greatly improved with the substitution of carbazole in compound 6 . The calculated emission spectra of the seven studied molecules can almost cover the full UV‐vis range (from 447.4 to 649.3 nm). Also, the Stokes shifts are unexpectedly large, ranging from 139.4 to 335.1 nm. This will result in the relatively long fluorescence lifetimes. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009