Premium
Visualizing molecular wavefunctions using Monte Carlo methods
Author(s) -
Alexander S. A.,
Coldwell R. L.
Publication year - 2008
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.21774
Subject(s) - wave function , variational monte carlo , electron density , quantum monte carlo , laplace operator , electron , monte carlo method , physics , chemistry , quantum mechanics , statistical physics , atomic physics , mathematics , statistics
Abstract Using explicitly correlated wavefunctions and variational Monte Carlo we calculate the electron density, the electron density difference, the intracule density, the extracule density, two forms of the kinetic energy density, the Laplacian of the electron density, the Laplacian of the intracule density, and the Laplacian of the extracule density on a dense grid of points for the ground state of the hydrogen molecule at three internuclear distances (0.6, 1.4, 8.0). With these values we construct a contour plot of each function and describe how it can be used to visualize the distribution of electrons in this molecule. We also examine the influence of electron correlation on each expectation value by calculating each function with a Hartree–Fock wavefunction and then comparing these values with our explicitly correlated values. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009