z-logo
Premium
Theoretical study on the reactive sites and intramolecular interactions in taxol and its four analogues
Author(s) -
Zhou Hongwei,
Zhang Zhiqiang,
Cheung HonYeung
Publication year - 2008
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.21712
Subject(s) - intramolecular force , oxetane , chemistry , molecule , atoms in molecules , ring (chemistry) , hydrogen bond , density functional theory , stereochemistry , computational chemistry , crystallography , organic chemistry
A density‐functional study of the paclitaxel (Taxol) molecule and its four analogues has been performed. The theory of Bader's atoms in molecules (AIM) was applied to examine the electronic structure of these molecules at their ground state. Topological analysis reveals that the esterification of hydroxyl group attached to the oxetane ring results in great change of conformation of the taxane ring, and thus is responsible for bioactivity of the oxetane oxygen atom. It was found that there exists some intramolecular interactions in the molecule, including normal hydrogen bonds (HBs) and double HBs. Visualization of the molecule shows that the central bodies (the four fused rings) of the molecules are wrapped by the intramolecular interactions. It is supposed that these intramolecular interactions lower the aqueous solubility and protect the flexible oxetane ring, which is regarded as the dominating bioactivity site of the drug, from being opened. Our results provide an extended and consistent set of data to gauge classical force fields in view of the atomistic investigations of the interaction of the bioactive molecules. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here