Premium
Solvent effect on the reactivity of CIS ‐platinum (II) complexes: A density functional approach
Author(s) -
Sarmah Pubalee,
Deka Ramesh C.
Publication year - 2008
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.21635
Subject(s) - chemistry , density functional theory , electrophile , reactivity (psychology) , computational chemistry , fukui function , quantitative structure–activity relationship , molecule , platinum , solvent effects , solvent , stereochemistry , organic chemistry , medicine , alternative medicine , pathology , catalysis
The structure and chemical reactivity of some selected cis ‐platinum(II) complexes, including clinically used drug molecules, cisplatin, carboplatin, and oxaliplatin are investigated using density functional theory (DFT) calculations. Calculated geometries of the complexes are in agreement with their available X‐ray data. The global and local reactivity descriptors, such as hardness, chemical potential, electrophilicity index, Fukui function, and local philicity are calculated to investigate the usefulness of these descriptors for understanding the reactive nature and reactive sites of the complexes. Inclusion of solvent effect shows that both global and local descriptors change the trend of reactivity with respect to their trend in the gas phase. The stability of the complexes increases with the inclusion of water molecules. Simple regression analysis is applied to build up a quantitative structure‐activity relationship (QSAR) model based on DFT derived electrophilicity index for the Pt(II) complexes against A2780 human ovarian adenocarcinoma cell line to establish the importance of the descriptor in predicting cytotoxicity. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008