z-logo
Premium
p K a optimized catalysis in serine proteinases, an ab initio study on the catalaytic His
Author(s) -
Hudáky Péter,
Perczel András
Publication year - 2007
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.21403
Subject(s) - catalytic triad , chemistry , catalysis , ab initio , histidine , serine , computational chemistry , proteases , enzyme catalysis , qm/mm , stereochemistry , enzyme , crystallography , organic chemistry
First principle models of catalytic apparatus of enzymes can be used for studying stability as well as the atomic details of a catalytic mechanism. For example, the catalytic triad of chymotrypsin was recently investigated by using an ab initio geometry optimized (Hudáky and Perczel, Proteins: Struct Funct Genet, 2006, 62, 749) self‐stabilizing molecule ensemble without the presence of the complete enzyme and substrate. Several parameters of the above catalytic reaction turned out to be the same within the model and the in vitro enzymatic reaction. Among the numerous parameters of the catalytic process geometrical changes of the catalytic histidine was investigated here and the variation of its p K a value was determined. A relatively large range, 3.5 unit, was determined as the variation of p K a as function of the conformational subspace available in serine proteases. Comparing PDB structures of the free and the complex enzymes it was shown, that histidine, after accepting the proton from the OH group of the catalytic serine, undergoes a minor conformational change accompanied by a 2.5 unit decrease in p K a . We conclude that the changes of p K a during catalysis are predominantly determined by the geometrical arrangement of the histidine moiety and this change serves as a significant driving force in the catalytic process. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here