z-logo
Premium
Quantum chemical investigation of linear hydrogen bonding in ONCCN···HX (X = F, Cl, Br) dimers
Author(s) -
Varadwaj Pradeep R.
Publication year - 2006
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.21238
Subject(s) - chemistry , intermolecular force , hydrogen bond , hydrogen halide , dimer , dipole , basis set , mulliken population analysis , population , computational chemistry , crystallography , atomic physics , molecule , density functional theory , alkyl , demography , halogen , organic chemistry , sociology , physics
Linear hydrogen bonding formed between the nitrogen end of cyanogen‐N‐oxide (ONCCN) and hydrogen halides HX (X = F, Cl, Br) has been observed in their ground Σ states. The order of agreement of energetic stabilities between the correlated functionals used in this calculation is: B3LYP < PBE0 < PBE < PW91 in conjunction with the 6–311++ G (3 df ,3 pd ) basis set. Analysis of various parameters describing the existence of H‐bonds in these dimers follows the conventional trend: ONCCN···HF > ONCCN···HCl > ONCCN···HBr in the series, except H‐bond lengths and static dipole polarizabilities which are in reverse order. The atomic charges obtained from the Mulliken and natural population analysis is used to assess the charge transfer effects that accompany the dimer formation. It is found from the investigation that the dimers having highest binding energy are accompanied by the highest transfer of charge. The 14 N nuclear quadrupole coupling constants of the monomer ON 1 CCN 2 are found to be decreased upon complection and in the series it increases from F through Br. We observed enhancements in the values of the dimer dipole moment and intrinsic dipole polarizabilities compared with the sum of the monomer values by intermolecular electrical interaction. Investigation reveals vibrational spectral shifts of HX and CN stretching modes similar to the conventional red‐shifted H‐bonded dimers; for the former case, the infrared band intensity increases significantly. Finally, the new vibrational modes originated from the intermolecular interaction are outlined. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here