z-logo
Premium
Acidity predictions in an electron propagator approach
Author(s) -
Agacino Esther,
Gaitán Ricardo,
Menconi Italo
Publication year - 2006
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.20953
Subject(s) - propagator , electronegativity , basis set , ionization energy , chemistry , atomic orbital , electron affinity (data page) , ionization , computational chemistry , molecular orbital , electron , linear combination of atomic orbitals , physics , quantum mechanics , atomic physics , molecule , density functional theory , ion
An alternative way to calculate vertical ionization potentials (VIP) and vertical electron affinity (VEA) is the application of Koopman's theorem, using the electron propagator theory. In the present work, the results of the application of this theorem using the electron propagator formalism have been compared with the experiment in order to validate different basis set. Using the basis set with the best performance, the acidity tendencies in some substituted acetic acid molecules have been analyzed by correlating the proton affinity (PA) with molecular electronegativity (χ) and hardness (η); these last indexes were obtained from the calculated VIP and VEA considering the finite difference approximation. The above correlations were compared with equivalent correlations using the energy of the frontier Hartree–Fock orbitals and the corresponding Kohn–Sham orbitals, which were calculated with the B3LYP‐DFT procedure. The results indicate that the electron propagator theory could be an interesting alternative to evaluate reactivity indexes, since this theory gives reliable values of VIP and VEA. It was also found that (i) the VIP values are very close to experiment, with only a 0.38% of error; (ii) acceptable results are inferred for VEA; (iii) a triple zeta quality function works quite well in these calculations, and particularly the 6‐311G(d,p) basis set is the best, as it had been reported; and (iv) using the depronation energy (DPE), good results were obtained in the correlations δDPE‐VEA and δDPE‐χ. The results tested that P3 approximation in the electron propagator approach can be a new and interesting alternative in predicting VIP, VEA, and some reactivity indexes, such as χ and η, at least for the compounds studied. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here