z-logo
Premium
Density functional theory study of the hydrogen bonding interaction of 1:1 complexes of serine with water
Author(s) -
Gong Xiaoli,
Zhou Zhengyu,
Du Dongmei,
Dong Xiuli,
Liu Shuzhen
Publication year - 2005
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.20471
Subject(s) - chemistry , density functional theory , hydrogen bond , ab initio , basis set , molecule , computational chemistry , perturbation theory (quantum mechanics) , potential energy surface , hydrogen , hypersurface , solvent , ab initio quantum chemistry methods , physics , quantum mechanics , organic chemistry , mathematical analysis , mathematics
The hydrogen bonding of 1:1 complexes formed between serine and water molecules were completely investigated in the present study employing ab initio and Density Functional Theory (DFT) methods at varied basis set levels from 6‐31g to 6‐311++g (2d,2p). For comparison, we also used the second‐order Moller–Plesset Perturbation (MP2) method at the 6‐31+g(d) level. Twelve reasonable geometries on the potential energy hypersurface of serine and water system were considered with the global minimum, 10 of which are cyclic double‐hydrogen bonded structures and the other two are one‐hydrogen bonded structures. The optimized geometric parameters and interaction energies for various isomers at different levels were estimated. The infrared spectrum frequencies, IR intensities, and the vibrational frequency shifts are reported. Finally, the solvent effects on the geometries of the serine–water complexes were also investigated using self‐consistent reaction‐field (SCRF) calculations at the B3LYP/6‐311++g(d,p) level. The results indicate that the polarity of the solvent played an important role in the structures and relative stabilities of different isomers. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here