z-logo
Premium
EHF theory of chemical reactions V. Nature of manganese–oxygen bonds by hybrid density functional theory (DFT) and coupled‐cluster (CC) methods
Author(s) -
Isobe H.,
Soda T.,
Kitagawa Y.,
Takano Y.,
Kawakami T.,
Yoshioka Y.,
Yamaguchi K.
Publication year - 2001
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.1099
Subject(s) - density functional theory , chemistry , dissociation (chemistry) , bond dissociation energy , manganese , cluster (spacecraft) , coupled cluster , hybrid functional , computational chemistry , molecule , oxide , organic chemistry , computer science , programming language
Hybrid density functional theory (DFT) and post‐Hartree–Fock methods are compared by depicting potential energy curves of the O–O dissociation of hydroperoxide and the M–O dissociation of transition‐metal oxides. The former approach includes BLYP, B2LYP, B3LYP, and more general hybrid DFT methods, while the unrestricted Hartree–Fock (UHF) coulpled‐cluster (UCC) SD(T) method is considered as the latter approach. The hybrid DFT methods can reproduce the potential curve of the O–O dissociation process and the dissociation energy of HOOH by UCCSD(T). The methods are also useful for depicting potential curves of copper oxide (CuO) and manganese oxide (MnO), and reproduce the experimental M–O binding energies. The nature of Mn–O bonds in the naked Mn–O, Mn–O porphyrine system and model complexes, XH 3 Mn(IV)O 2 Mn(IV)H 3 Y (X,Y=O,H), are examined in relation to the possible mechanisms of oxygenation reactions. It is found that the radical character of Mn–O bonds increases with the increase of the oxidation number of the Mn ion in these systems. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here