Premium
Polyacetylene as a qubit system
Author(s) -
Da Silva Andre Elvas Pereira,
Silva Geraldo Magela E
Publication year - 2003
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.10677
Subject(s) - polyacetylene , hamiltonian (control theory) , electric field , impurity , qubit , molecule , quantum , physics , chemistry , molecular physics , atomic physics , condensed matter physics , quantum mechanics , doping , mathematical optimization , mathematics
Abstract The dynamics of a polyacetylene single chain as a system for possible physical implementations of quantum bits is determined. This novel proposition is studied by varying intensity and duration of application of an electric field as well as the intensity, number, and position in the polymer chain of impurity molecules. The behavior of soliton pairs, whose associated energy levels form the quantum bit, is analyzed. The chain is modeled by a modified Pariser–Parr–Pople Hamiltonian extended to include the effects of an external electric field and the parameters of the impurity molecules. The effect of the variation of the field and impurities on the separation of the energy levels associated with soliton pairs is analyzed by numerical integration of the equations of motion. Two different approaches for controlling the separation of levels are presented and their features compared. First, we examine the use of changes in the electric field to control the distance (and ultimately coupling) between two solitons moving freely on the chain or captured by the potential generated by the impurity molecules. Second, we look at the change in the intensity of the impurities alone, with no application of an external field. We have found that the effect of the use of the field on the separation of levels is much smaller than the one obtained by changes in the parameters of the impurity molecules, which eventually led us to achieve quantum bit behavior in a polyacetylene chain. The influence of the field and impurity parameters in the energy levels is determined, as is their role in the coupling of the two solitons on the chain. Critical values for distance between solitons, intensity of field, and impurities that determine whether a pair of solitons can work as a quantum bit are obtained. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 95: 224–229, 2003