Premium
Physicochemical and structural properties of bacteriostatic sulfonamides: Theoretical study
Author(s) -
SorianoCorrea Catalina,
Esquivel Rodolfo O.,
Sagar Robin P.
Publication year - 2003
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.10597
Subject(s) - protonation , chemistry , molecule , proton affinity , amide , sulfonamide , deprotonation , computational chemistry , affinities , atoms in molecules , density functional theory , group (periodic table) , ring (chemistry) , methyl group , crystallography , proton , stereochemistry , organic chemistry , ion , physics , quantum mechanics
A theoretical study at the Hartree–Fock and density functional theory levels is performed on sulfonamide‐type bacteriostatic compounds with the aim to provide an insight into their structure–activity relationship. The basicity of the p ‐amino group is analyzed by means of the proton affinities and the protonation energies, showing that molecules presenting bacteriostatic activity are less basic, i.e., they are characterized by larger protonation energies and smaller proton affinities. The acidity of the amide group is analyzed through the deprotonation energy. The results reveal that the more acidic molecules present a larger bacteriostatic activity. This result is also confirmed from a study of bond orders. A bond order analysis of the amide group suggests that the electron attracting group in these molecules is responsible for the increase in acidity. The charge of the SO 2 group is also shown to be affected by the presence of the electron attracting group and consequently related to the acidity of the molecules. A geometric analysis shows that structures in which the amino group is more coplanar with respect to the benzenic ring possess larger bacteriostatic activity. A conformational analysis of these molecules illustrates that active molecules have relatively larger torsion energy barriers. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 165–172, 2003