z-logo
Premium
Ab initio fragment orbital‐based theory
Author(s) -
Das G. P.,
Yeates A. T.,
Dudis D. S.
Publication year - 2003
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.10493
Subject(s) - ab initio , fragment molecular orbital , fragment (logic) , atomic orbital , molecule , molecular orbital , computational chemistry , reduction (mathematics) , chemistry , basis set , molecular orbital theory , quantum , molecular physics , physics , quantum mechanics , density functional theory , computer science , mathematics , algorithm , geometry , electron
A new formulation of ab initio theory is presented that treats a large molecule in terms of wave functions of its constituent molecular subunits (to be called fragments). The method aims to achieve near conventional ab initio accuracy but using a truncated set of fragment orbitals with a consequent drastic reduction of computing time and storage requirement. Illustrative calculations are presented for the molecule amino‐nitro‐stilbene. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom