Premium
When, in the context of drug design, can a fluorine atom successfully substitute a hydroxyl group?
Author(s) -
Hoffmann Marcin,
Rychlewski Jacek
Publication year - 2002
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.10277
Subject(s) - chemistry , conformational isomerism , fluorine , context (archaeology) , atom (system on chip) , hydrogen bond , hydrogen atom , oxygen atom , molecule , group (periodic table) , computational chemistry , organic chemistry , paleontology , computer science , biology , embedded system
In this article, we deal with the question of whether a fluorine atom can substitute a hydroxyl group in such a way that will lead to a compound showing a desired biologic activity, that is, a potential new drug. It is obvious that a fluorine atom differs from a hydroxyl group, as it cannot donate hydrogen bonds. However, it can accept them. Moreover, both fluorine and oxygen are of similar size and are the most electronegative elements. Therefore, a fluorine atom is thought to be a good substitute for a hydroxyl group. However, it was shown that for conformationally labile aliphatic compounds a replacement of a hydroxyl by a fluorine increases conformational diversity, so the fluorine‐containing aliphatic molecules are present in equilibrium at room temperature as a mixture of several different conformers. In contrast, for cyclic compounds the substitution of an OH group by an F atom does not much change shape and electrostatic potential around corresponding conformers. Moreover, these compounds are present in equilibrium at room temperature in aqueous solution as a mixture of the same most favored structures. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002