z-logo
Premium
Semiempirical simulation of a theta‐class glutathione S‐transferase‐catalyzed glutathione attack to the allelochemical DIMBOA
Author(s) -
Sant'Anna Carlos Mauricio R.,
De Souza Vivian Passos,
Santos De Andrade Deogenes
Publication year - 2002
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.10133
Subject(s) - chemistry , glutathione , nucleophile , stereochemistry , residue (chemistry) , tripeptide , catalysis , hydrogen bond , aldehyde , medicinal chemistry , organic chemistry , molecule , enzyme , amino acid , biochemistry
We evaluated by the semiempirical method PM3 possible mechanisms of a putative interaction between a cereal allelochemical, the cyclic hydroxamic acid 2,4‐dihydroxy‐7‐metoxy‐2 H ‐1,4‐benzoxazin‐3(4 H )‐one (DIMBOA), and the tripeptide glutathione (GSH) inside the active site of a theta‐class glutathione S‐transferase. Based on a preliminary study of transition states from DIMBOA reactions with methanethiolate as a simple model of GSH, we investigated the roles of catalytic residues of the enzyme during nucleophilic additions of GSH to the carbonyl groups of DIMBOA and of its phenol/aldehyde isomer inside the active site model. Our results suggest that a tyrosine residue, Tyr113, makes the most important contributions for the catalytic mechanism. In the modeled reaction steps, Tyr113 behaves as a double hydrogen bond donor catalyst for nucleophilic additions of GSH to substrates: It initially helps stabilize the strongly nucleophilic reduced GSH with a hydrogen bond intermediated by a water molecule; during substrate approach, small conformational changes enable the residue to make a direct hydrogen bond to the substrate group that develop negative charge after addition of reduced GSH. © 2002 Wiley Periodicals, Inc.; Int J Quantum Chem, 2002

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom