z-logo
Premium
Use of promolecular ASA density functions as a general algorithm to obtain starting MO in SCF calculations
Author(s) -
Amat Lluís,
CarbóDorca Ramon
Publication year - 2001
Publication title -
international journal of quantum chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.484
H-Index - 105
eISSN - 1097-461X
pISSN - 0020-7608
DOI - 10.1002/qua.10068
Subject(s) - formalism (music) , density matrix , basis set , electronic structure , convergence (economics) , quantum , ab initio , mathematics , computational chemistry , statistical physics , algorithm , density functional theory , quantum mechanics , chemistry , physics , art , musical , economics , visual arts , economic growth
Atomic shell approximation (ASA) constitutes a way to fit first‐order density functions to a linear combination of spherical functions. The ASA fitting method makes use of positive definite expansion coefficients to ensure appropriate probability distribution features. The ASA electron density is sufficiently accurate for the practical implementation of quantum similarity measures, as was proved in previous published work. Here, a new application of the ASA density formalism is analyzed, and employed to obtain an initial guess of the density matrix for SCF procedures. The number of cycles needed to assess the convergence criterion in electronic energy calculations appears comparable to or less than those obtained by other means. Several molecular structures of different classes, including organic systems and metal complexes, were chosen as representative test cases. In addition, an ASA basis set for atoms Sc‐Kr fitted to an ab initio 6‐311G basis set is also presented. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here