Premium
Autocorrelated SPC for Non‐Normal Situations
Author(s) -
Castagliola Philippe,
Tsung Fugee
Publication year - 2005
Publication title -
quality and reliability engineering international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 62
eISSN - 1099-1638
pISSN - 0748-8017
DOI - 10.1002/qre.612
Subject(s) - autocorrelation , statistical process control , control chart , computer science , process capability , data mining , skewness , variance (accounting) , independent and identically distributed random variables , statistics , process (computing) , econometrics , engineering , mathematics , work in process , random variable , operations management , accounting , business , operating system
The importance of statistical process control (SPC) techniques in quality improvement is well recognized in industry. However, most conventional SPC techniques have been developed under the assumption of independent, identically and normally distributed observations. With advances in sensing and data capturing technologies, large volumes of data are being routinely collected from individual units in manufacturing industries. These data are often autocorrelated and skewed. Conventional SPC techniques can lead to false alarms or other types of poor performance monitoring of such data. There is a great need for process control techniques for variation reduction in these environments. Much recent research has focused on the development of appropriate SPC techniques for autocorrelated data, but few studies have considered the impact of non‐normality on these techniques. This paper investigates the effect of skewness on conventional autocorrelated SPC techniques, and provides an effective approach based on a scaled weighted variance approach to improve SPC performance in such an environment. Copyright © 2005 John Wiley & Sons, Ltd.