z-logo
Premium
A Method of Estimating the Process Capability Index from the First Four Moments of Non‐normal Data
Author(s) -
Ding Jianmin
Publication year - 2004
Publication title -
quality and reliability engineering international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 62
eISSN - 1099-1638
pISSN - 0748-8017
DOI - 10.1002/qre.610
Subject(s) - kurtosis , mathematics , skewness , range (aeronautics) , standard deviation , probability density function , statistics , hermite polynomials , conventional pci , cumulative distribution function , method of moments (probability theory) , normal distribution , limit (mathematics) , mathematical analysis , psychology , materials science , estimator , psychiatry , myocardial infarction , composite material
A method is presented to estimate the process capability index (PCI) for a set of non‐normal data from its first four moments. It is assumed that these four moments, i.e. mean, standard deviation, skewness, and kurtosis, are suitable to approximately characterize the data distribution properties. The probability density function of non‐normal data is expressed in Chebyshev–Hermite polynomials up to tenth order from the first four moments. An effective range, defined as the value for which a pre‐determined percentage of data falls within the range, is solved numerically from the derived cumulative distribution function. The PCI with a specified limit is hence obtained from the effective range. Compared with some other existing methods, the present method gives a more accurate PCI estimation and shows less sensitivity to sample size. A simple algebraic equation for the effective range, derived from the least‐square fitting to the numerically solved results, is also proposed for PCI estimation. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here