z-logo
Premium
An Empirical Bayes Process Monitoring Technique for Polytomous Data
Author(s) -
Shiau JyhJen H.,
Chen ChihRung,
Feltz Carol J.
Publication year - 2005
Publication title -
quality and reliability engineering international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 62
eISSN - 1099-1638
pISSN - 0748-8017
DOI - 10.1002/qre.604
Subject(s) - polytomous rasch model , estimator , hyperparameter , computer science , bayes' theorem , dirichlet distribution , dirichlet process , mathematics , statistics , econometrics , bayesian probability , algorithm , item response theory , mathematical analysis , boundary value problem , psychometrics
When a product item is tested, usually one has more information than just pass or fail. Often there are categories of failure modes. The purpose of this paper is to develop a method to monitor the fractions of the tested items falling into different categories of pass/fail modes. Using the multinomial model with Dirichlet prior, we describe the theory underlying an empirical Bayes approach to monitoring polytomous data generated in manufacturing processes. A pseudo maximum likelihood estimator (PMLE) and the method‐of‐moments estimator (MME) of the hyperparameters of the prior distribution are considered and compared by a simulation study. It is found that the PMLE performs slightly better than the MME. A monitoring scheme based on the marginal distributions of the observed pass/fail fractions is proposed. The average run length behavior of the proposed monitoring scheme is investigated. Finally, an example to illustrate the use of the technique is given. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom