z-logo
Premium
Integrating artificial intelligence into on‐line statistical process control
Author(s) -
Guh RueyShiang
Publication year - 2003
Publication title -
quality and reliability engineering international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 62
eISSN - 1099-1638
pISSN - 0748-8017
DOI - 10.1002/qre.510
Subject(s) - statistical process control , control chart , process (computing) , computer science , automation , chart , process control , expert system , artificial neural network , control (management) , field (mathematics) , artificial intelligence , engineering , mechanical engineering , statistics , mathematics , pure mathematics , operating system
Statistical process control (SPC) is one of the most effective tools of total quality management, the main function of which is to monitor and minimize process variations. Typically, SPC applications involve three major tasks in sequence: (1) monitoring the process, (2) diagnosing the deviated process and (3) taking corrective action. With the movement towards a computer integrated manufacturing environment, computer based applications need to be developed to implement the various SPC tasks automatically. However, the pertinent literature shows that nearly all the researches in this field have only focussed on the automation of monitoring the process. The remaining two tasks still need to be carried out by quality practitioners. This project aims to apply a hybrid artificial intelligence technique in building a real time SPC system, in which an artificial neural network based control chart monitoring sub‐system and an expert system based control chart alarm interpretation sub‐system are integrated for automatically implementing the SPC tasks comprehensively. This system was designed to provide the quality practitioner with three kinds of information related to the current status of the process: (1) status of the process (in‐control or out‐of‐control). If out‐of‐control, an alarm will be signaled, (2) plausible causes for the out‐of‐control situation and (3) effective actions against the out‐of‐control situation. An example is provided to demonstrate that hybrid intelligence can be usefully applied for solving the problems in a real time SPC system. Copyright © 2003 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here