Premium
A double generally weighted moving average exceedance control chart
Author(s) -
Masoumi Karakani Hossein,
Human Schalk William,
Niekerk Janet
Publication year - 2019
Publication title -
quality and reliability engineering international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 62
eISSN - 1099-1638
pISSN - 0748-8017
DOI - 10.1002/qre.2393
Subject(s) - control chart , shewhart individuals control chart , ewma chart , chart , nonparametric statistics , statistical process control , computer science , statistic , x bar chart , statistics , \bar x and r chart , control limits , process (computing) , data mining , mathematics , operating system
Since the inception of control charts by W. A. Shewhart in the 1920s, they have been increasingly applied in various fields. The recent literature witnessed the development of a number of nonparametric (distribution‐free) charts as they provide a robust and efficient alternative when there is a lack of knowledge about the underlying process distribution. In order to monitor the process location, information regarding the in‐control (IC) process median is typically required. However, in practice, this information might not be available due to various reasons. To this end, a generalized type of nonparametric time‐weighted control chart labeled as the double generally weighted moving average (DGWMA) based on the exceedance statistic (EX) is proposed. The DGWMA‐EX chart includes many of the well‐known existing time‐weighted control charts as special or limiting cases for detecting a shift in the unknown location parameter of a continuous distribution. The DGWMA‐EX chart combines the better shift detection properties of a DGWMA chart with the robust IC performance of a nonparametric chart, by using all the information from the start until the most recent sample to decide if a process is IC or out‐of‐control. An extensive simulation study reveals that the proposed DGWMA‐EX chart, in many cases, outperforms its counterparts.