z-logo
Premium
A GLR control chart for monitoring a multinomial process
Author(s) -
Lee Jaeheon,
Peng Yiming,
Wang Ning,
Reynolds Marion R.
Publication year - 2017
Publication title -
quality and reliability engineering international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 62
eISSN - 1099-1638
pISSN - 0748-8017
DOI - 10.1002/qre.2143
Subject(s) - cusum , control chart , bernoulli's principle , multinomial distribution , chart , bernoulli process , shewhart individuals control chart , statistics , range (aeronautics) , control limits , statistical process control , statistic , set (abstract data type) , mathematics , computer science , process (computing) , ewma chart , engineering , programming language , aerospace engineering , operating system
The problem of detecting changes in the parameter p in a Bernoulli process with two possible categories for each observation has been extensively investigated in the SPC literature, but there is much less work on detecting changes in the vector parameter p in a multinomial process where there are more than two categories. A few papers have considered the case in which the direction of the change in p is known, but there is almost no work for the important case in which the direction of the change is unknown and individual observations are obtained. This paper proposes a multinomial generalized likelihood ratio (MGLR) control chart based on a likelihood ratio statistic for monitoring p when individual observations are obtained and the direction and size of the change in p are unknown. A set of 2‐sided Bernoulli cumulative sum (CUSUM) charts is proposed as a reasonable competitor of the MGLR chart. It is shown that the MGLR chart has better overall performance than the set of 2‐sided Bernoulli CUSUM charts over a wide range of unknown shifts. Equations are presented for obtaining the control limit of the MGLR chart when there are three or four components in p .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom