z-logo
Premium
Optimal Designs for Random Blocks Model Using Corrected Criteria
Author(s) -
RodríguezDíaz Juan M.,
RivasLópez María Jesús,
MartínChaves Sandra,
VereasTalaván Cristina
Publication year - 2016
Publication title -
quality and reliability engineering international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 62
eISSN - 1099-1638
pISSN - 0748-8017
DOI - 10.1002/qre.1904
Subject(s) - covariance matrix , estimator , covariance , mathematics , estimation of covariance matrices , matrix (chemical analysis) , covariance function , statistics , mathematical optimization , algorithm , materials science , composite material
Many industrial experiments involve random factors. The random blocks model defines a covariance structure in the data, thus generalized least square estimators of the parameters are used, and their covariance matrix is usually computed using the inverse of the generalized least square estimators information matrix. Many optimality criteria are based on this approximation of the covariance matrix. However, this approach underestimates the true covariance matrix of the parameters, and thus, the optimality criteria should be corrected in order to pay attention to the actual covariance. The bias in the estimation of the covariance matrix is negligible (or even null) for many models, and for this reason in those cases, it has no sense to deal with the corrected criteria because of the complexity of the calculations involved. But for some models, the correction does have importance, and thus, the modified criteria should be considered when designing; otherwise, the practitioner may risk to deal with poor designs. Some analytical results are presented for simpler models, and optimal designs taking into account the corrected variance will be computed and compared with those using the traditional approach for more complex models, showing that the loss in efficiency may be very important when the correction for the covariance matrix is ignored. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here