Premium
Exponential CUSUM Charts with Estimated Control Limits
Author(s) -
Zhang Min,
Megahed Fadel M.,
Woodall William H.
Publication year - 2014
Publication title -
quality and reliability engineering international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 62
eISSN - 1099-1638
pISSN - 0748-8017
DOI - 10.1002/qre.1495
Subject(s) - cusum , control chart , statistics , control limits , exponential function , sample size determination , poisson distribution , shewhart individuals control chart , independent and identically distributed random variables , chart , exponential distribution , computer science , mathematics , statistical process control , random variable , ewma chart , process (computing) , operating system , mathematical analysis
Exponential CUSUM charts are used in monitoring the occurrence rate of rare events because the interarrival times of events for homogeneous Poisson processes are independent and identically distributed exponential random variables. In these applications, it is assumed that the exponential parameter, i.e. the mean, is known or has been accurately estimated. However, in practice, the in‐control mean is typically unknown and must be estimated to construct the limits for the exponential CUSUM chart. In this article, we investigate the effect of parameter estimation on the run length properties of one‐sided lower exponential CUSUM charts. In addition, analyzing conditional performance measures shows that the effect of estimation error can be significant, affecting both the in‐control average run length and the quick detection of process deterioration. We also provide recommendations regarding phase I sample sizes. This sample size must be quite large for the in‐control chart performance to be close to that for the known parameter case. Finally, we provide an industrial example to highlight the practical implications of estimation error, and to offer advice to practitioners when constructing/analyzing a phase I sample. Copyright © 2013 John Wiley & Sons, Ltd.