Premium
Mixed Exponentially Weighted Moving Average–Cumulative Sum Charts for Process Monitoring
Author(s) -
Abbas Nasir,
Riaz Muhammad,
Does Ronald J. M. M.
Publication year - 2013
Publication title -
quality and reliability engineering international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 62
eISSN - 1099-1638
pISSN - 0748-8017
DOI - 10.1002/qre.1385
Subject(s) - cusum , ewma chart , control chart , statistical process control , statistics , x bar chart , estimator , moving average , chart , shewhart individuals control chart , step detection , computer science , control limits , mathematics , process (computing) , operating system , filter (signal processing) , computer vision
The control chart is a very popular tool of statistical process control. It is used to determine the existence of special cause variation to remove it so that the process may be brought in statistical control. Shewhart‐type control charts are sensitive for large disturbances in the process, whereas cumulative sum (CUSUM)–type and exponentially weighted moving average (EWMA)–type control charts are intended to spot small and moderate disturbances. In this article, we proposed a mixed EWMA–CUSUM control chart for detecting a shift in the process mean and evaluated its average run lengths. Comparisons of the proposed control chart were made with some representative control charts including the classical CUSUM, classical EWMA, fast initial response CUSUM, fast initial response EWMA, adaptive CUSUM with EWMA‐based shift estimator, weighted CUSUM and runs rules–based CUSUM and EWMA. The comparisons revealed that mixing the two charts makes the proposed scheme even more sensitive to the small shifts in the process mean than the other schemes designed for detecting small shifts. Copyright © 2012 John Wiley & Sons, Ltd.