Premium
Phase I control chart based on a kernel estimator of the quantile function
Author(s) -
Mercado Gary R.,
Conerly Michael D.,
Perry Marcus B.
Publication year - 2011
Publication title -
quality and reliability engineering international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 62
eISSN - 1099-1638
pISSN - 0748-8017
DOI - 10.1002/qre.1201
Subject(s) - control chart , estimator , quantile , chart , control limits , statistics , computer science , ewma chart , statistical process control , shewhart individuals control chart , quantile function , kernel density estimation , x bar chart , monte carlo method , normal distribution , mathematics , probability distribution , process (computing) , moment generating function , operating system
To measure the statistical performance of a control chart in Phase I applications, the in‐control average run length (ARL) is the most frequently used parameter. In typical start up situations, control limits must be computed without knowledge of the underlying distribution of the quality characteristic. Assumptions of an underlying normal distribution can increase the probability of false alarms when the underlying distribution is non‐normal, which can lead to unnecessary process adjustments. In this paper, a control chart based on a kernel estimator of the quantile function is proposed. Monte Carlo simulation was used to evaluate the in‐control ARL performance of this chart relative to that of the Shewhart individuals control chart. The results indicate that the proposed chart is more robust to deviations in the assumed underlying distribution (with respect to the in‐control ARL) and results in an alternative method of designing control charts for individual units. Copyright © 2011 John Wiley & Sons, Ltd.