Premium
Reliability‐based robust design optimization: A multi‐objective framework using hybrid quality loss function
Author(s) -
Yadav Om Prakash,
Bhamare Sunil S.,
Rathore Ajay
Publication year - 2010
Publication title -
quality and reliability engineering international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 62
eISSN - 1099-1638
pISSN - 0748-8017
DOI - 10.1002/qre.1027
Subject(s) - reliability (semiconductor) , reliability engineering , quality (philosophy) , product (mathematics) , function (biology) , computer science , product design , engineering , mathematics , power (physics) , philosophy , physics , geometry , epistemology , quantum mechanics , evolutionary biology , biology
In this globally competitive business environment, design engineers are constantly striving to establish new and effective tools and techniques to ensure a robust and reliable product design. Robust design (RD) and reliability‐based design approaches have shown the potential to deal with variability in the life cycle of a product. This paper explores the possibilities of combining both approaches into a single model and proposes a hybrid quality loss function‐based multi‐objective optimization model. The model is unique because it uses a hybrid form of quality loss‐based objective function that is defined in terms of desirable as well as undesirable deviations to obtain efficient design points with minimum quality loss. The proposed approach attempts to optimize the product design by addressing quality loss, variability, and life‐cycle issues simultaneously by combining both reliability‐based and RD approaches into a single model with various customer aspirations. The application of the approach is demonstrated using a leaf spring design example. Copyright © 2009 John Wiley & Sons, Ltd.