Premium
Nocturnal low‐level jet and ‘atmospheric streams’ over the rain shadow region of Indian Western Ghats
Author(s) -
Prabha T. V.,
Goswami B. N.,
Murthy B. S.,
Kulkarni J. R.
Publication year - 2011
Publication title -
quarterly journal of the royal meteorological society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.744
H-Index - 143
eISSN - 1477-870X
pISSN - 0035-9009
DOI - 10.1002/qj.818
Subject(s) - jet stream , jet (fluid) , boundary layer , orographic lift , atmospheric sciences , baroclinity , climatology , geology , hydraulic jump , atmosphere (unit) , eddy , environmental science , turbulence , front (military) , weather research and forecasting model , meteorology , flow (mathematics) , precipitation , geography , physics , oceanography , mechanics
Spatial and temporal characteristics of a nocturnal low‐level jet (LLJ) on the east side of the Western Ghat mountain range over India's west coast and processes leading to the formation of the jet are discussed. The boundary‐layer jet has a regional scale extent, as revealed by high‐resolution Advanced Research Weather Research and Forecasting (ARW) model simulations, and contributes to the formation of ‘atmospheric streams’ of water vapor over the selected land regions. Simulations indicate that the formation of LLJ is mainly attributed to the baroclinicity of the valley atmosphere due to the gently rolling terrain, which is assisted by the persistence of an unstable residual layer above the developing stable boundary layer in the valley and cooling over the slopes. Prior to the formation of LLJ, the boundary layer is dominated by deep roll circulations. The LLJ followed a gust front zone associated with a mountain wave. The low‐level flow below the jet is decoupled from the upper‐level flow as a result of strong vorticity below the jet and suppression of turbulence at the jet core. A conceptual model for the boundary layer interactions, dynamics of the mountain wave, LLJ, etc. are proposed for Western Ghat region. Copyright © 2011 Royal Meteorological Society
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom