Premium
The Ekman spiral
Author(s) -
Ellison T. H.
Publication year - 1955
Publication title -
quarterly journal of the royal meteorological society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.744
H-Index - 143
eISSN - 1477-870X
pISSN - 0035-9009
DOI - 10.1002/qj.49708135025
Subject(s) - geostrophic wind , thermal wind , physics , surface (topology) , geostrophic current , meteorology , mathematics , wind profile power law , wind speed , mechanics , geology , geometry
Abstract Previous workers have used an eddy viscosity varying with height linearly or according to a power law, when discussing the variation of the wind between the surface and the height at which it (supposedly) attains the geostrophic value, but they have not used the appropriate boundary conditions to obtain the familiar forms for the velocity profile very near the surface. In conditions of neutral stability this profile is given by\documentclass{article}\pagestyle{empty}\begin{document}$$ \frac{u}{{u_* }}\; = \;\frac{1}{k}\;\ln \;(z/z_0)\;.\;.\;.\;.\;.\;(1) $$\end{document}where u * = (τ) 1/2 and k = 0·40. Eq. (1) corresponds to an eddy viscosity, K M , given by\documentclass{article}\pagestyle{empty}\begin{document}$$ K_M \; = \;\;ku_* \;z\;.\;.\;.\;.\;.\;(2) $$\end{document}If this formula is assumed to hold at all heights, and the geostrophic wind is assumed to be uniform and constant, it can be shown that\documentclass{article}\pagestyle{empty}\begin{document}$$ (u_G \; - \;u)\; - \;\;i(v_G \; - \;v)\; = \;A\;H_0 ^{(1)} \;(4ifz/ku_*)^{\frac{1}{2}} .\;.\;.\;.\;.\;(3) $$\end{document}where u is the component of the wind in the direction of the surface wind and v that perpendicular to it; the suffix G denotes the geostrophic value and f is the Coriolis parameter.