z-logo
Premium
Interpretation of the spectrum of eastward‐moving tropical convective anomalies
Author(s) -
Roundy Paul E.
Publication year - 2019
Publication title -
quarterly journal of the royal meteorological society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.744
H-Index - 143
eISSN - 1477-870X
pISSN - 0035-9009
DOI - 10.1002/qj.3709
Subject(s) - kelvin wave , madden–julian oscillation , oscillation (cell signaling) , physics , spectral density , confusion , equatorial waves , wavenumber , convection , geophysics , computational physics , geology , meteorology , mathematics , optics , statistics , chemistry , astronomy , psychoanalysis , equator , latitude , psychology , biochemistry
Wave‐number‐frequency power spectrum analysis has been used as a primary tool to detect the ranges of wave numbers and frequencies about which observed convectively coupled equatorial waves are active. Previous works have suggested that activity in these waves clusters between roughly 12 and 60 m equivalent depths because spectral peaks normalized by dividing by a smoothed spectral background follow those ranges. Through a combination of wave‐number‐frequency power spectrum analysis, filtering and linear regression, this work shows that the traditional approach generates confusion because it conflates different, sometimes conflicting, signals from around the world that contribute to the same parts of the spectrum. Results also suggest that the traditional method leads us to ignore substantial power associated with variability structurally consistent with observed Kelvin waves but that occurs at lower frequencies. Wave signals at these frequencies are stronger than but similar to Kelvin wave signals coincident with the Kelvin peak in the normalized spectrum. Results suggest that the wave signal itself has red properties, possibly because more strongly convectively coupled waves propagate more slowly. The slower, more intense wave signals outside of the standard band would impact tangible weather signals and should not be ignored in operations. Instead, results support the view that disturbances labelled as Kelvin waves form a continuum with the Madden–Julian Oscillation (MJO) and suggest that the whole region of the spectrum from the broadly recognized Kelvin band to the MJO should be considered together.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here