Premium
A nonlinear multiscale interaction model for atmospheric blocking: The eddy‐blocking matching mechanism
Author(s) -
Luo Dehai,
Cha Jing,
Zhong Linhao,
Dai Aiguo
Publication year - 2014
Publication title -
quarterly journal of the royal meteorological society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.744
H-Index - 143
eISSN - 1477-870X
pISSN - 0035-9009
DOI - 10.1002/qj.2337
Subject(s) - eddy , blocking (statistics) , anticyclone , potential vorticity , vorticity , vortex , merge (version control) , baroclinity , mechanics , geology , large eddy simulation , turbulence , climatology , forcing (mathematics) , nonlinear system , geophysics , physics , meteorology , computer science , information retrieval , computer network , quantum mechanics
In this article, a nonlinear multiscale interaction (NMI) model is used to propose an eddy‐blocking matching (EBM) mechanism to account for how synoptic eddies reinforce or suppress a blocking flow. It is shown that the spatial structure of the eddy vorticity forcing (EVF) arising from upstream synoptic eddies determines whether an incipient block can grow into a meandering blocking flow through its interaction with the transient synoptic eddies from the west. Under certain conditions, the EVF exhibits a low‐frequency oscillation on time‐scales of 2–3 weeks. During the EVF phase with a negative‐over‐ positive dipole structure, a blocking event can be resonantly excited through the transport of eddy energy into the incipient block by the EVF. As the EVF changes into an opposite phase, the blocking decays. The NMI model produces life cycles of blocking events that resemble observations. Moreover, it is shown that the eddy north–south straining is a response of the eddies to a dipole‐ or Ω‐type block. In our model, as in observations, two synoptic anticyclones (cyclones) can attract and merge with one another as the blocking intensifies, but only when the feedback of the blocking on the eddies is included. Thus, we attribute the eddy straining and associated vortex interaction to the feedback of the intensified blocking on synoptic eddies. The results illustrate the concomitant nature of the eddy deformation, the role of which, as a potential vorticity source for the blocking flow, becomes important only during the mature stage of a block. Our EBM mechanism suggests that an incipient block flow is amplified (or suppressed) under certain conditions by the EVF coming from the upstream of the blocking region. This also suggests that weather and climate models need to be run with a grid size below 100 km in order to simulate the matching EVF and thus atmospheric blocking.