z-logo
Premium
High‐latitude influence of the quasi‐biennial oscillation
Author(s) -
Anstey James A.,
Shepherd Theodore G.
Publication year - 2013
Publication title -
quarterly journal of the royal meteorological society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.744
H-Index - 143
eISSN - 1477-870X
pISSN - 0035-9009
DOI - 10.1002/qj.2132
Subject(s) - quasi biennial oscillation , teleconnection , polar vortex , stratosphere , climatology , high latitude , atmospheric sciences , latitude , vortex , environmental science , oscillation (cell signaling) , polar , el niño southern oscillation , meteorology , geology , physics , astronomy , geodesy , biology , genetics
The interannual variability of the stratospheric winter polar vortex is correlated with the phase of the quasi‐biennial oscillation (QBO) of tropical stratospheric winds. This dynamical coupling between high and low latitudes, often referred to as the Holton–Tan effect, has been the subject of numerous observational and modelling studies, yet important questions regarding its mechanism remain unanswered. In particular it remains unclear which vertical levels of the QBO exert the strongest influence on the winter polar vortex, and how QBO–vortex coupling interacts with the effects of other sources of atmospheric interannual variability such as the 11‐year solar cycle or the El Niño Southern Oscillation. As stratosphere‐resolving general circulation models begin to resolve the QBO and represent its teleconnections with other parts of the climate system, it seems timely to summarize what is currently known about the QBO's high‐latitude influence. In this review article, we offer a synthesis of the modelling and observational analyses of QBO–vortex coupling that have appeared in the literature, and update the observational record.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here