z-logo
Premium
Development and evaluation of active packaging for sliced mozzarella preservation
Author(s) -
dos Santos Pires Ana Clarissa,
de Fátima Ferreira Soares Nilda,
de Andrade Nélio José,
da Silva Luís Henrique Mendes,
Camilloto Geany Peruch,
Bernardes Patrícia Campos
Publication year - 2008
Publication title -
packaging technology and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.365
H-Index - 50
eISSN - 1099-1522
pISSN - 0894-3214
DOI - 10.1002/pts.815
Subject(s) - nisin , antimicrobial , food science , staphylococcus aureus , listeria monocytogenes , active packaging , food packaging , chemistry , natamycin , microbiology and biotechnology , bacteria , biology , genetics
Antimicrobial films were formed by the incorporation of nisin (NI), natamycin (NA) and a combination of both (NI + NA) into cellulose polymer. Film efficacies were evaluated in vitro against Staphylococcus aureus ATCC 6538, Listeria monocytogenes ATCC 15313, Penicillium sp. and Geotrichum sp. The films were also evaluated on sliced mozzarella cheese against moulds and yeasts, Staphylococcus sp. and psychrotrophic bacteria. Mechanical and microscopic properties of the films and the diffusion of the antimicrobial agents from the film to the cheese were also evaluated. Films containing NI showed an antimicrobial effect in vitro against S. aureus and L. monocytogenes, while films containing NA were effective in vitro against Penicillium sp. and Geotrichum sp. By the ninth day of storage at 12 ± 2°C, the count of yeasts and moulds on cheese covered with films containing NA decreased 2 log10 units compared with the count on cheese with control films. NI film did not show an effect against Staphylococcus sp., but it was effective against psychrotrophic bacteria for 6 days of storage of the cheese. The incorporation of antimicrobial compounds decreased the resistance and elongation of the films and caused changes in their molecular conformation. NI diffusion from the films to the cheese was not detected; however, time‐dependent diffusion of NA from the film containing NI + NA was measured. The incorporation of NI and NA together in the films did not show an effect. The film containing NA showed potential for application as active food packaging for sliced mozzarella cheese. Copyright © 2008 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here