z-logo
Premium
Plant‐derived chemicals as potential inhibitors of SARS‐CoV ‐2 main protease ( 6LU7 ), a virtual screening study
Author(s) -
Sisakht Mohsen,
Mahmoodzadeh Amir,
Darabian Maryam
Publication year - 2021
Publication title -
phytotherapy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.019
H-Index - 129
eISSN - 1099-1573
pISSN - 0951-418X
DOI - 10.1002/ptr.7041
Subject(s) - nelfinavir , lopinavir , galangin , protease , virtual screening , cysteine protease , indinavir , chemistry , amprenavir , docking (animal) , enzyme , biochemistry , pharmacology , virology , biology , drug discovery , virus , medicine , viral load , kaempferol , hiv 1 protease , antiretroviral therapy , antioxidant , quercetin , nursing
SARS‐CoV‐2 has caused millions of infections and more than 700,000 deaths. Taking the urgent need to find new therapeutics for coronavirus disease 2019 (COVID‐19), a dataset of plant‐based natural compounds was selected for the screening of antiviral activity. The viral 3‐chymotrypsin‐like cysteine protease (Mpro, 3CLpro) was selected as the target. Molecular docking was performed on 2,845 phytochemicals to estimate the spatial affinity for the active sites of the enzyme. The ADMET screening was used for the pharmacological and physicochemical properties of the hit compounds. Nelfinavir and Lopinavir were used as control for binding energy comparison. The top 10 hits, based on the binding energy (Kcal/mol), were Ginkgolide M (−11.2), Mezerein (−11), Tubocurarine (−10.9), Gnidicin (−10.4), Glycobismine A (−10.4), Sciadopitysin Z‐10.2), Gnididin (−9.2), Glycobismine A (−10.4), Sciadopitysin (−10.2), Gnididin (−9.20, Emetine (−8.7), Vitexin (−8.3), Calophyllolide (−8.3), and 6‐(3,3‐Dimethylallyl)galangin (−7.9). The binding energy for nelfinavir and lopinavir were − 9.1 and − 8.4, respectively. Interestingly, some of these natural products were previously shown to possess antiviral properties against various viruses, such as HIV, Zika, and Ebola viruses. Herein, we suggest several phytochemicals as the inhibitors of the main protease of SARS‐CoV‐2 that could be used in the fight against COVID‐19.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here