z-logo
Premium
Tectorigenin protects against experimental fulminant hepatic failure by regulating the TLR4/mitogen‐activated protein kinase and TLR4/nuclear factor‐κB pathways and autophagy
Author(s) -
Zhang Lingjian,
Zhao Yalei,
Fan Linxiao,
Xu Kai,
Ji Feiyang,
Xie Zhongyang,
Ouyang Xiaoxi,
Wu Daxian,
Li Lanjuan
Publication year - 2019
Publication title -
phytotherapy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.019
H-Index - 129
eISSN - 1099-1573
pISSN - 0951-418X
DOI - 10.1002/ptr.6299
Subject(s) - tlr4 , mapk/erk pathway , fulminant hepatic failure , autophagy , tumor necrosis factor alpha , lipopolysaccharide , protein kinase a , pharmacology , inflammation , apoptosis , chemistry , kinase , medicine , endocrinology , biochemistry , transplantation , liver transplantation
Tectorigenin has received attention due to its antiproliferation, anti‐inflammatory, and antioxidant activities. In this study, we investigated the effects of tectorigenin on lipopolysaccharide (LPS)/D‐galactosamine(D‐GalN)‐induced fulminant hepatic failure (FHF) in mice and LPS‐stimulated macrophages (RAW 264.7 cells). Pretreatment with tectorigenin significantly reduced the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), histological injury, apoptosis, and the mortality of FHF mice, by suppressing the production of inflammatory cytokines such as TNF‐α and IL‐6. Tectorigenin also suppressed the activation of the inflammatory response in LPS‐stimulated RAW 264.7 cells. Tectorigenin‐induced protection is mediated through its mitigation of TLR4 expression, inhibition of mitogen‐activated protein kinase (MAPK) and nuclear factor‐κB (NF‐κB) pathway activation, and promotion of autophagy in FHF mice and LPS‐stimulated RAW 264.7 cells. Therefore, tectorigenin has therapeutic potential for FHF in mice via the regulation of TLR4/MAPK and TLR4/NF‐κB pathways and autophagy.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here