Premium
Effects of Ginkgo Biloba Extract EGb‐761 on Neuropathic Pain in Mice: Involvement of Opioid System
Author(s) -
Zhu Chao,
Li Wei,
Xu Fan,
Li Mo,
Yang Liu,
Hu XueYu,
Ye ZhengXu,
Wang Zhe,
Luo ZhuoJing
Publication year - 2016
Publication title -
phytotherapy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.019
H-Index - 129
eISSN - 1099-1573
pISSN - 0951-418X
DOI - 10.1002/ptr.5685
Subject(s) - ginkgo biloba , opioid , ginkgoales , pharmacognosy , neuropathic pain , pharmacology , medicine , traditional medicine , anesthesia , chemistry , biological activity , receptor , in vitro , biochemistry
Neuropathic pain is considered as one of the most difficult types of pain to manage with conventional analgesics. EGb‐761 is extracted from leaves of Ginkgo biloba and has analgesia and anti‐inflammatory properties. This study aimed to examine the effect of EGb‐761 on chronic constriction injury (CCI)‐induced neuropathic pain behaviors, including thermal hyperalgesia and mechanical allodynia, and to explore the possible mechanisms underlying this action. To this end, CCI mice were intraperitoneally injected with EGb‐761 (10, 20, 40, and 80 mg/kg), and thermal hyperalgesia, mechanical allodynia, cytokines, and mu‐opioid receptor expression were measured. Results showed that EGb‐761 attenuated thermal hyperalgesia and mechanical allodynia dose‐dependently and the best delivery time window was from day 7 to day 14 after CCI. Additionally, EGb‐761 treatment significantly decreased pro‐inflammatory cytokines and enhanced mu opioid receptor (MOR) expression in the sciatic nerve. Moreover, the opioid antagonist naloxone prevented the effect of EGb‐761 on thermal hyperalgesia and mechanical allodynia but did not influence the effect of EGb‐761 on inflammatory cytokines. In conclusion, this study suggests that the potential of EGb‐761 as a new analgesic for neuropathic pain treatment, and opioid system may be involved in the EGb‐761‐induced attenuation of thermal hyperalgesia and mechanical allodynia. Copyright © 2016 John Wiley & Sons, Ltd.