Premium
Astragaloside I Stimulates Osteoblast Differentiation Through the Wnt/β‐catenin Signaling Pathway
Author(s) -
Cheng Xun,
Wei Biaofang,
Sun Lijuan,
Hu Xiaofang,
Liang Jichao,
Chen Yong
Publication year - 2016
Publication title -
phytotherapy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.019
H-Index - 129
eISSN - 1099-1573
pISSN - 0951-418X
DOI - 10.1002/ptr.5674
Subject(s) - wnt signaling pathway , runx2 , osteoblast , signal transduction , microbiology and biotechnology , catenin , beta catenin , chemistry , dkk1 , bone morphogenetic protein , biology , biochemistry , gene , in vitro
Astragaloside I (As‐I), one of the main active ingredients in Astragalus membranaceus , is believed to have osteogenic properties, but this hypothesis has not been investigated in detail. In the present work, the As‐I‐induced osteogenic effects and its underlying mechanism were studied in MC3T3‐E1 cells. The results indicated that the cellular levels of ALP and extracellular matrix calcium increased in a dose‐dependent manner by As‐I. To clarify the mechanisms involved in this process, the effect of As‐I on the key osteogenic‐related genes was investigated. We found that As‐I stimulated the expression of β‐catenin and Runx2 in MC3T3‐E1 cells, which play central roles in the Wnt/β‐catenin signaling pathway, suggesting that As‐I could promote osteoblastic differentiation by regulating the Wnt/β‐catenin signaling pathway. Moreover, the osteogenic effect of As‐I could be inhibited by DKK‐1, which is the classical inhibitor of Wnt/β‐catenin‐signaling pathway. Furthermore, As‐I also increased BMP‐2, BGP and OPG/RANKL expression, which are also activated by Wnt/β‐catenin signaling pathway. Taken together, our findings show that As‐I stimulates osteoblast differentiation through the Wnt/β‐catenin signaling pathway, which also activates the BMP pathway and RANK pathway, thus highlighting the As‐I for pharmaceutical and medicinal applications such as treating bone disease. Copyright © 2016 John Wiley & Sons, Ltd.