z-logo
Premium
Blinded assessment of treatment effects for survival endpoint in an ongoing trial
Author(s) -
Xie Jun,
Quan Hui,
Zhang Ji
Publication year - 2012
Publication title -
pharmaceutical statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 38
eISSN - 1539-1612
pISSN - 1539-1604
DOI - 10.1002/pst.535
Subject(s) - sample size determination , clinical trial , maximization , surrogate endpoint , clinical endpoint , treatment effect , statistics , computer science , econometrics , medicine , mathematics , mathematical optimization , traditional medicine
Many assumptions, including assumptions regarding treatment effects, are made at the design stage of a clinical trial for power and sample size calculations. It is desirable to check these assumptions during the trial by using blinded data. Methods for sample size re‐estimation based on blinded data analyses have been proposed for normal and binary endpoints. However, there is a debate that no reliable estimate of the treatment effect can be obtained in a typical clinical trial situation. In this paper, we consider the case of a survival endpoint and investigate the feasibility of estimating the treatment effect in an ongoing trial without unblinding. We incorporate information of a surrogate endpoint and investigate three estimation procedures, including a classification method and two expectation–maximization (EM) algorithms. Simulations and a clinical trial example are used to assess the performance of the procedures. Our studies show that the expectation–maximization algorithms highly depend on the initial estimates of the model parameters. Despite utilization of a surrogate endpoint, all three methods have large variations in the treatment effect estimates and hence fail to provide a precise conclusion about the treatment effect. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here