z-logo
Premium
Designing historical control studies with survival endpoints using exact statistical inference
Author(s) -
Han Gang
Publication year - 2020
Publication title -
pharmaceutical statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 38
eISSN - 1539-1612
pISSN - 1539-1604
DOI - 10.1002/pst.2050
Subject(s) - sample size determination , test statistic , asymptotic distribution , inference , statistics , statistical hypothesis testing , computer science , statistic , statistical inference , research design , mathematics , econometrics , artificial intelligence , estimator
Summary Historical control trials compare an experimental treatment with a previously conducted control treatment. By assigning all recruited samples to the experimental arm, historical control trials can better identify promising treatments in early phase trials compared with randomized control trials. Existing designs of historical control trials with survival endpoints are based on asymptotic normal distribution. However, it remains unclear whether the asymptotic distribution of the test statistic is close enough to the true distribution given relatively small sample sizes in early phase trials. In this article, we address this question by introducing an exact design approach for exponentially distributed survival endpoints, and compare it with an asymptotic design in both real examples and simulation examples. Simulation results show that the asymptotic test could lead to bias in the sample size estimation. We conclude the proposed exact design should be used in the design of historical control trials.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here