Premium
Assurance for clinical trial design with normally distributed outcomes: Eliciting uncertainty about variances
Author(s) -
Alhussain Ziyad A.,
Oakley Jeremy E.
Publication year - 2020
Publication title -
pharmaceutical statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 38
eISSN - 1539-1612
pISSN - 1539-1604
DOI - 10.1002/pst.2040
Subject(s) - variance (accounting) , outcome (game theory) , computer science , distribution (mathematics) , statistics , range (aeronautics) , medical physics , mathematics , medicine , engineering , mathematical analysis , accounting , mathematical economics , business , aerospace engineering
Summary The assurance method is growing in popularity in clinical trial planning. The method involves eliciting a prior distribution for the treatment effect, and then calculating the probability that a proposed trial will produce a “successful” outcome. For normally distributed observations, uncertainty about the variance of the normal distribution also needs to be accounted for, but there is little guidance in the literature on how to elicit a distribution for a variance parameter. We present a simple elicitation method, and illustrate how the elicited distribution is incorporated within an assurance calculation. We also consider multi‐stage trials, where a decision to proceed with a larger trial will follow from the outcome of a smaller trial; we illustrate the role of the elicited distribution in assessing the information provided by a proposed smaller trial. Free software is available for implementing our methods.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom