z-logo
Premium
Selection bias for treatments with positive Phase 2 results
Author(s) -
Kirby S.,
Li Jianjun,
ChuangStein C.
Publication year - 2020
Publication title -
pharmaceutical statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 38
eISSN - 1539-1612
pISSN - 1539-1604
DOI - 10.1002/pst.2024
Subject(s) - selection bias , estimator , selection (genetic algorithm) , treatment effect , statistics , econometrics , phase (matter) , computer science , unbiased estimation , mathematics , medicine , machine learning , physics , quantum mechanics , traditional medicine
Summary In drug development, treatments are most often selected at Phase 2 for further development when an initial trial of a new treatment produces a result that is considered positive. This selection due to a positive result means, however, that an estimator of the treatment effect, which does not take account of the selection is likely to over‐estimate the true treatment effect (ie, will be biased). This bias can be large and researchers may face a disappointingly lower estimated treatment effect in further trials. In this paper, we review a number of methods that have been proposed to correct for this bias and introduce three new methods. We present results from applying the various methods to two examples and consider extensions of the examples. We assess the methods with respect to bias of estimation of the treatment effect and compare the probabilities that a bias‐corrected treatment effect estimate will exceed a decision threshold. Following previous work, we also compare average power for the situation where a Phase 3 trial is launched given that the bias‐corrected observed Phase 2 treatment effect exceeds a launch threshold. Finally, we discuss our findings and potential application of the bias correction methods.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here