z-logo
Premium
Incorporating historical two‐arm data in clinical trials with binary outcome: A practical approach
Author(s) -
Feißt Manuel,
Krisam Johannes,
Kieser Meinhard
Publication year - 2020
Publication title -
pharmaceutical statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 38
eISSN - 1539-1612
pISSN - 1539-1604
DOI - 10.1002/pst.2023
Subject(s) - frequentist inference , type i and type ii errors , bayesian probability , outcome (game theory) , sample size determination , statistics , computer science , binary data , clinical trial , statistical power , binary number , word error rate , econometrics , data mining , mathematics , bayesian inference , artificial intelligence , medicine , arithmetic , mathematical economics , pathology
SUMMARY The feasibility of a new clinical trial may be increased by incorporating historical data of previous trials. In the particular case where only data from a single historical trial are available, there exists no clear recommendation in the literature regarding the most favorable approach. A main problem of the incorporation of historical data is the possible inflation of the type I error rate. A way to control this type of error is the so‐called power prior approach. This Bayesian method does not “borrow” the full historical information but uses a parameter 0 ≤ δ ≤ 1 to determine the amount of borrowed data. Based on the methodology of the power prior, we propose a frequentist framework that allows incorporation of historical data from both arms of two‐armed trials with binary outcome, while simultaneously controlling the type I error rate. It is shown that for any specific trial scenario a value δ > 0 can be determined such that the type I error rate falls below the prespecified significance level. The magnitude of this value of δ depends on the characteristics of the data observed in the historical trial. Conditionally on these characteristics, an increase in power as compared to a trial without borrowing may result. Similarly, we propose methods how the required sample size can be reduced. The results are discussed and compared to those obtained in a Bayesian framework. Application is illustrated by a clinical trial example.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom