Premium
Cancer immunotherapy trial design with delayed treatment effect
Author(s) -
Wu Jianrong,
Wei Jing
Publication year - 2019
Publication title -
pharmaceutical statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 38
eISSN - 1539-1612
pISSN - 1539-1604
DOI - 10.1002/pst.1982
Subject(s) - sample size determination , statistics , mathematics , piecewise , hazard ratio , rank (graph theory) , log rank test , medicine , econometrics , survival analysis , confidence interval , mathematical analysis , combinatorics
A challenge arising in cancer immunotherapy trial design is the presence of a delayed treatment effect wherein the proportional hazard assumption no longer holds true. As a result, a traditional survival trial design based on the standard log‐rank test, which ignores the delayed treatment effect, will lead to substantial loss of statistical power. Recently, a piecewise weighted log‐rank test is proposed to incorporate the delayed treatment effect into consideration of the trial design. However, because the sample size formula was derived under a sequence of local alternative hypotheses, it results in an underestimated sample size when the hazard ratio is relatively small for a balanced trial design and an inaccurate sample size estimation for an unbalanced design. In this article, we derived a new sample size formula under a fixed alternative hypothesis for the delayed treatment effect model. Simulation results show that the new formula provides accurate sample size estimation for both balanced and unbalanced designs.