z-logo
Premium
Planning and analyzing clinical trials with competing risks: Recommendations for choosing appropriate statistical methodology
Author(s) -
Poythress J.C.,
Lee Misun Yu,
Young James
Publication year - 2019
Publication title -
pharmaceutical statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 38
eISSN - 1539-1612
pISSN - 1539-1604
DOI - 10.1002/pst.1966
Subject(s) - econometrics , computer science , event (particle physics) , nonparametric statistics , inference , statistical hypothesis testing , statistical inference , statistical model , statistics , hazard , causal inference , data mining , machine learning , mathematics , artificial intelligence , physics , quantum mechanics , chemistry , organic chemistry
In the analysis of time‐to‐event data, competing risks occur when multiple event types are possible, and the occurrence of a competing event precludes the occurrence of the event of interest. In this situation, statistical methods that ignore competing risks can result in biased inference regarding the event of interest. We review the mechanisms that lead to bias and describe several statistical methods that have been proposed to avoid bias by formally accounting for competing risks in the analyses of the event of interest. Through simulation, we illustrate that Gray's test should be used in lieu of the logrank test for nonparametric hypothesis testing. We also compare the two most popular models for semiparametric modelling: the cause‐specific hazards (CSH) model and Fine‐Gray (F‐G) model. We explain how to interpret estimates obtained from each model and identify conditions under which the estimates of the hazard ratio and subhazard ratio differ numerically. Finally, we evaluate several model diagnostic methods with respect to their sensitivity to detect lack of fit when the CSH model holds, but the F‐G model is misspecified and vice versa. Our results illustrate that adequacy of model fit can strongly impact the validity of statistical inference. We recommend analysts incorporate a model diagnostic procedure and contingency to explore other appropriate models when designing trials in which competing risks are anticipated.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here