z-logo
Premium
Testing for bioequivalence of highly variable drugs from TR ‐ RT crossover designs with heterogeneous residual variances
Author(s) -
Kang Qing,
Vahl Christopher I.
Publication year - 2017
Publication title -
pharmaceutical statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 38
eISSN - 1539-1612
pISSN - 1539-1604
DOI - 10.1002/pst.1816
Subject(s) - bioequivalence , residual , type i and type ii errors , statistics , sample size determination , statistical power , crossover , variable (mathematics) , mathematics , computer science , design of experiments , medicine , algorithm , machine learning , pharmacokinetics , pharmacology , mathematical analysis
Traditional bioavailability studies assess average bioequivalence (ABE) between the test (T) and reference (R) products under the crossover design with TR and RT sequences. With highly variable (HV) drugs whose intrasubject coefficient of variation in pharmacokinetic measures is 30% or greater, assertion of ABE becomes difficult due to the large sample sizes needed to achieve adequate power. In 2011, the FDA adopted a more relaxed, yet complex, ABE criterion and supplied a procedure to assess this criterion exclusively under TRR‐RTR‐RRT and TRTR‐RTRT designs. However, designs with more than 2 periods are not always feasible. This present work investigates how to evaluate HV drugs under TR‐RT designs. A mixed model with heterogeneous residual variances is used to fit data from TR‐RT designs. Under the assumption of zero subject‐by‐formulation interaction, this basic model is comparable to the FDA‐recommended model for TRR‐RTR‐RRT and TRTR‐RTRT designs, suggesting the conceptual plausibility of our approach. To overcome the distributional dependency among summary statistics of model parameters, we develop statistical tests via the generalized pivotal quantity (GPQ). A real‐world data example is given to illustrate the utility of the resulting procedures. Our simulation study identifies a GPQ‐based testing procedure that evaluates HV drugs under practical TR‐RT designs with desirable type I error rate and reasonable power. In comparison to the FDA's approach, this GPQ‐based procedure gives similar performance when the product's intersubject standard deviation is low (≤0.4) and is most useful when practical considerations restrict the crossover design to 2 periods.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here